Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 27(1): 187-195, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985801

RESUMO

Recent studies in mice have shown that orofacial behaviors drive a large fraction of neural activity across the brain. To understand the nature and function of these signals, we need better computational models to characterize the behaviors and relate them to neural activity. Here we developed Facemap, a framework consisting of a keypoint tracker and a deep neural network encoder for predicting neural activity. Our algorithm for tracking mouse orofacial behaviors was more accurate than existing pose estimation tools, while the processing speed was several times faster, making it a powerful tool for real-time experimental interventions. The Facemap tracker was easy to adapt to data from new labs, requiring as few as 10 annotated frames for near-optimal performance. We used the keypoints as inputs to a deep neural network which predicts the activity of ~50,000 simultaneously-recorded neurons and, in visual cortex, we doubled the amount of explained variance compared to previous methods. Using this model, we found that the neuronal activity clusters that were well predicted from behavior were more spatially spread out across cortex. We also found that the deep behavioral features from the model had stereotypical, sequential dynamics that were not reversible in time. In summary, Facemap provides a stepping stone toward understanding the function of the brain-wide neural signals and their relation to behavior.


Assuntos
Encéfalo , Redes Neurais de Computação , Camundongos , Animais , Algoritmos , Neurônios/fisiologia , Córtex Cerebral
2.
Sci Rep ; 11(1): 4567, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633281

RESUMO

Anesthetics are deemed necessary for all major surgical procedures. However, they have also been found to exert neurotoxic effects when tested on various experimental models, but the underlying mechanisms remain unknown. Earlier studies have implicated mitochondrial fragmentation as a potential target of anesthetic-induced toxicity, although clinical strategies to protect their structure and function remain sparse. Here, we sought to determine if preserving mitochondrial networks with a non-toxic, short-life synthetic peptide-P110, would protect cortical neurons against both inhalational and intravenous anesthetic-induced neurotoxicity. This study provides the first direct and comparative account of three key anesthetics (desflurane, propofol, and ketamine) when used under identical conditions, and demonstrates their impact on neonatal, rat cortical neuronal viability, neurite outgrowth and synaptic assembly. Furthermore, we discovered that inhibiting Fis1-mediated mitochondrial fission reverses anesthetic-induced aberrations in an agent-specific manner. This study underscores the importance of designing mitigation strategies invoking mitochondria-mediated protection from anesthetic-induced toxicity in both animals and humans.


Assuntos
Anestésicos Gerais/efeitos adversos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Peptídeos/farmacologia , Sinapses/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Células Cultivadas , Imunofluorescência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/síntese química , Peptídeos/síntese química , Propofol/efeitos adversos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
3.
Nanotechnology ; 27(27): 275202, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27211506

RESUMO

A perfect organic crystal while keeping high quality semiconductor/dielectric interface with minimal defects and disorder is crucial for the realization of high performance organic single crystal field-effect transistors (OSCFETs). However, in most reported OSCFET devices, the crystal transfer processes is extensively used. Therefore, the semiconductor/dielectric interface is inevitably damaged. Carrier traps and scattering centers are brought into the conduction channel, so that the intrinsic high mobility of OSCFET devices is entirely disguised. Here, very thin pentacene single crystal is grown directly on bare SiO2 by developing a 'seed-controlled' pentacene single crystal method. The interface quality is controlled by an in situ fabrication of OSCFETs. The interface is kept intact without any transfer process. Furthermore, we quantitatively analyze the influence of crystal thickness on device performance. With a pristine interface and very thin crystal, we have achieved the highest mobility: 5.7 cm(2) V(-1) s(-1)-more than twice the highest ever reported pentacene OSCFET mobility on bare SiO2. This study may provide a universal route for the use of small organic molecules to achieve high performance in lamellar single crystal field-effect devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...